等比数列怎么求和_公式是什么

伊人百科 5 0

等比数列怎么求和_公式是什么

你对于等比数列公式了解多少?这是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。

等比数列的求和公式

公式当中a1为首项,an为数列第n项,q为等比数列公比,Sn为前n项和。

等比数列的性质

①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;

②在等比数列中,依次每 k项之和仍成等比数列;

③若m、n、q∈N,且m+n=2q,则am×an=(aq)2;

④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);

⑤在等比数列中,首项a1与公比q都不为零.

⑥在数列{an}中每隔k(k∈N__)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1)

⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列

高中数学必背公式总结大全

圆的公式

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(pi)r

4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

椭圆公式

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

两角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

等差数列

1、等差数列的通项公式为:

an=a1+(n-1)d(1)

2、前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式.

3、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N__,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

和=(首项+末项)__项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

等比数列

1、等比数列的通项公式是:An=A1__q^(n-1)

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意两项am,an的关系为an=am·q^(n-m)

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

4、若m,n,p,q∈N__,则有:ap·aq=am·an,

等比中项:aq·ap=2arar则为ap,aq等比中项.

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.

性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;

②在等比数列中,依次每k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

抛物线

1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。

a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p__^2=2pyx^2=-2py。

正余弦定理

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bc__cosA

诱导公式

一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

三:任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

提高成绩的数学学习方法

首先、准备好笔记本和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有经验的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。

其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试教育,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。

最后、就是有些数学公式什么的,公式背不下来就甭做题。。这是真的。。但是真没必要像背古文那样背,没意义,背下来也不知道怎么用。如果上课老师带着推导公式一定要在草稿纸上划拉一遍,不用说你自己会推,主要就是了解一下,就当是增加以下数感,这种东西做多了有好处的。

提高数学成绩高效方法

课后一分钟回忆及时复习

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,以免欲速则不达。复习课的容量大、内容多、时间紧。

避免”会而不对“的错误习惯

解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。但在正规考试中即使答案对了,由于过程不完整而扣分较多。还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致会而不对,或是为了保证正确率,反复验算,费时费力,影响整体得分。这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。

重视”一题多解“”多题同解“

学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。进入复习阶段后,大量的试题铺天盖地而来,这时我们一定要保持清醒的头脑,要有所为,有所不为。