有关基本导数公式有什么
什么是导数?也叫导函数值。是有关微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。下面小编给大家整理了基本导数公式有什么的内容,欢迎阅读,内容仅供参考!
基本导数公式16个整理
16个基本导数公式(y:原函数;y':导函数):
1、y=c,y'=0(c为常数)。
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。
导数的几何意义是什么
导数的数学意义是:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的物理意义是:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
高中必背的数学公式
(一)两角和公式
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(二)倍角公式
1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA
(三)半角公式
1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
(四)和差化积
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(五)几何体表面积和体积公式
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)
3、正方体:表面积:S=6a2,体积:V=a3(a-边长)
4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)
5、棱柱:体积:V=Sh(S-底面积,h-高)
6、棱锥:体积:V=Sh/3(S-底面积,h-高)
7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)
8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)
9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)
10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)
11、直圆锥:V=πr^2h/3(r-底半径,h-高)
12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)
13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)
14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)
15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)
16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)
高中必背的圆的公式
(一)圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
(二)椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积